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Abstract

‘We present a general theory for the use of negative premises in the rules of Transition System Specifi-
cations (TSS’s). We formulate a criterion that should be satisfied by a TSS in order to be meaningful,
i.e. to unequivocally define a transition relation. We also provide powerful techniques for proving that
a TSS satisfies this criterion, meanwhile constructing this transition relation. Both the criterion and
the techniques originate from logic programming [8, 7] to which TSS'’s are close.

As in [10), we show that the bisimulation relation induced by a TSS is a congruence, provided that it
is in ntyft/ntyrt-format and can be proved meaningful using our techniques. As a running example,
we study the combined addition of priorities and abstraction to Basic Process Algebra (BPA). Under
some reasonable conditions we show that this TSS is indeed meaningful, which could not be shown
by other methods [2, 10]. Finally, we provide a sound and complete axiomatization for this example.
We have omitted most proofs here; they can be found in [3].

The first author is partly suppgrted by the European Communities under ESPRIT Basic Research
Action 3020 (Integration). The second author is supported by the European Communities under
RACE project no. 1046 (SPECS) and ESPRIT Basic Research Action 3006 (CONCUR).

1 Introduction

Since its introduction in [14] Plotkin-style operational semantics has become a popular means for
giving meaning to process calculi, specification and programming languages in tetms of transition
systems. A transition system consists mainly of a transition relation which is specified by a set of
rules forming a Transition System Specification (TSS) [11]. Recently, the use of negative premises
in these rules has become popular [2, 10, 4, 15], because it allows one to define more operators
in an easy way. However, the logical meaning of those negative premises is not always clear.
Therefore, the formal foundation of some of these articles is somewhat questionable.

In this article we provide a way to treat negative premises in general and we study some of
the consequences of this treatment. The fundamental problem of negative premises in TSS’s is
that they cannot be proved in the same way positive premises can. In order to overcome this
problem, we resort to a non-classical treatment of negation, similar to default logic [17] and logic
programming [8]. Following [8], we define the stable transition relations of a TSS. A TSS can have
any number of stable transition relations. We propose to define the semantics of a TSS P as the
unique stable transition relation of P, if one exists.

In general it is difficult to show that a TSS has a unique stable transition relation. However,
some techniques have been developed for this. The first technique, called stratification, is presented
in [10]. Stratification is an intuitively appealing technique, and quite easy to use, but it is not
always strong enough. Here, we introduce a more powerful technique, based on well-founded
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models in logic programming [7]. This technique, which we call reduction, is more powerful than
stratification, but also more difficult to use. The two techniques can be amalgamated, using
reduction when necessary and stratification when possible. This is demonstrated on our running
example, showing that under some reasonable conditions a transition relation can be associated
with it.

Having defined the meaning of a TSS as its associated transition relation and shown how to
arrive at this transition relation, we switch to the study of properties of transition relations as
consequences of properties of their defining TSS’s.

Throughout the paper we use an example to illustrate these techniques: a TSS specifying the
operational semantics of Basic Process Algebra (BPA) extended with priorities [1] and abstraction
[9, 12].

Acknowledgements. We thank Krzysztof Apt, Jos Baeten, Jan Bergstra, Alban Ponse, Fer-Jan
de Vries and the referees for their valuable comments.

2 Preliminaries

In this section we provide the basic concepts of this paper: transition relations and Transition
System Specifications (TSS’s). We also present the running example.
We assume the presence of an infinite set V' of variables with typical elements z,y, z....

Definition 2.1. A (single sorted) signature is a structure £ = (F,rank) where F is a set of
function names disjoint with V' and rank : F — Nis a function that gives the arity of a function
name. We denote the set of terms over a signature ¥ and a set of variables W by T(Z, W). T(Z, 0)
is abbreviated by T(X); elements from T'(X) are called closed or ground terms. T(X) is used to
abbreviate T(Z, V), the set of open terms. Var(t) C V is the set of variables in a term t € T(E).
A substitution o is a mapping in V — T(Z). It is extended to a mapping o : T(Z) — T(Z) in the
standard way. A substitution is closed (or ground) if it maps all variables onto closed terms.

A transition relation prescribes what activities, represented by labeled transitions, can be per-
formed by terms over some signature. Generally, the signature represents a programming or a

specification language and the terms are programs. The transition relation models the operational
behavior of these terms.

Definition 2.2. Let T be a signature and A a set of labels. A (labeled) transition relation is
a subset — of T'r(Z, A) where Tr(X, A) = T(Z) x A x T(Z). Elements (¢, a,t’) of a transition
relation are written as t—=+t'.

A transition relation is often defined by means of a Transition System Specification (TSS).
PLOTKIN [14] defended the use of TSS’s to give an operational semantics, and therefore a TSS is
sometimes called an operational semantics in Plotkin style. The term TSS was first coined in [11]
for a system in which rules had only positive premises. Negative premises were added in [10].

Definition 2.3. A TSS (Transition System Specification) is a triple P = (X, 4, R) with £ a
signature, A a set of labels and R a set of rules of the form:

{te-25t) [k € K} U {t; 2]l € L}

t-—Sot!

with K, L (possibly infinite) index sets, tx,t},1,t,t' € T(Z), ax,b,a € A (k € K, 1 € L). An
expression of the form t—2t' is called a (positive) literal. t-5 is called a negative literal. ¢, 4, are
used to range over literals. For any rule » € R the literals above the line are called the premises
of r, notation prem(r), and the literal below the line is called the conclusion of r, denoted as
conc(r). Furthermore, we write pprem(r) for the set of positive premises of r and nprem(r) for
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the set of negative premises of . A rule r is called positive if there are no negative premises, i.e.
nprem(r) = 0. A TSS is called positive if it has only positive rules. A rule is called an aziom if its

set of premises is empty. An axiom

2 is often written as t—=»t'. The notions ‘substitution’,

N
‘Var' and ‘closed’ extend to literals and rules as expected.

Throughout this article we use the following Transition System Specification scheme to illustrate
the techniques we introduce. It describes the semantics of a small basic process language extended
with priorities and abstraction. This combination has not been studied before due to the technical
complications that are involved. Priorities are investigated in [1, 5, 6]. We follow the line set out
by BAETEN, BERGSTRA and KLOP [1] who introduced a priority operator 8. For abstraction
we take observation equivalence as introduced by MILNER [12] although technically we follow
VAN GLABBEEK [9]. We base our example on BPA;,.,, Basic Process Algebra with 6, € and 7 as
introduced in [11], and extend it with recursion and priorities.

€: Rl: %5
a: R2: a—%scifa€ Act,
a ! a !
+: R3.1: — 7 R32: — L Y
z + y—Sa' T+ y-Soy
a, Vit a1
R4.1: % if a € Act, R4.2: z——j?—f—ﬂ
z-y—z' -y T y—y
z-%2' Vb>az3b Lz’
6: R5.1: fae€ Act, R5.2:
b 0) 8(z)0()
z-%2' Vb>aySh . z-Log!
q: R6.1: fa€Act; R621 ———H—
zay-Sz' na T zay-Hr!
a ! a !
T R7.1: ——" _ifagl R7.2: —— = _ifael
mr(z)—S7(2') 1(z) (")

t a
recursion: R8: X _YifX e<txeckE
X2y

T-rules: R9.1: a-%7if a € Act,

T a
Rgg ¥ VT2 R9.3: .
r—2z T—2

Table 1: The operational semantics of BPAs,, with priorities (a € Act, /, b € Act,).

Example 2.4 (BPAj;,., with priorities). We assume that we have a given set Act of actions that
represent the basic activities that can be performed by processes. Act, = ActU {r} is a set of
actions containing the symbol 7 representing internal or hidden activity. Moreover, we assume a
partial ordering < on Act,, which we call the priority relation: actions higher in the ordering have
a higher priority than actions lower in the ordering. We assume that < is backwardly well-founded,
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i.e. the inverse of < constitutes a well-founded ordering.

Our signature contains a constant a for each action a € Act,. Moreover, we have the two
constants & and e. § is called inaction (or deadlock) and it represents the process that cannot do
anything at all. ¢ is called the empty process which cannot do anything but terminate. Sequential
composition is written as ’ and alternative composition is denoted by +. We often leave out
the ¢’ and assume that ‘-’ binds stronger than +. Actions can be renamed to T by abstraction
operators 11 (I C Act).

For recursion it is assumed that there is some given set E of process names. Each process name
X € E is treated as a constant in the signature. Furthermore, we assume that a set E of process
declarations is given. For each process name X in E there is a declaration X <ty € E where tx
is a closed term over the signature. Terms that do not contain process names are called recursion
free.

The remaining operators in the signature deal with priorities. The priority operator 6 acts as
a sieve: 6(z) only allows those actions from z that have highest priority. For the axiomatization
of BPA;s., with priorities, which is given in section 8, we need the unless operator <, which was
introduced in [1]. This operator is applied on two operands and only allows an action in its
left-hand side provided the right-hand side cannot do any action with higher priority.

When (Act,, <) and (8, E) are fixed, we obtain a TSS which is an instance of BPAs,, with
priorities. Such an instance will be denoted as Py = (Zy, Ay, Ry). The signature £y = (Fy, ranky)
is described above. The labels in Ay are exactly those in Act, together with one special symbol /:
if a process term ¢ can perform a /-step, i.e. t—5t', this means that ¢ has an option to terminate.

The rules in Ry are given in table 1. Here, the action a ranges over Act,., = Act, U{y/} and b
ranges over Act,. In rules R5.1 and R6.1 we use the notation Vb > a z-44 which means that for
all b with higher priority than a, there is a negative premise z-%. We think that the remaining
rules are self explanatory.

3 Transition relations for TSS’s

We have introduced TSS’s as a formalism for specifying transition relations. Thus a most fun-
damental question is which transition relation is actually defined by a TSS. In this section we
outline some answers proposed in the literature for several classes of TSS’s. Then we show an
instance of our running example for which these techniques are not adequate.

First, a link between the transitions in a transition relation and the literals in TSS’s is estab-
lished.

Definition 3.1. Let — be a transition relation. A positive ground literal v holds in — or %
is valid in —, notation — |= 9, if the transition ¢ € —. A negative ground literal t-% holds
in —, notation — |= t-%, if for no t' € T(X) the transition t—=+t' € —. For a set of ground
literals ¥, we write — | ¥ iff V¢ € U: — = 9.

At least one may require that a transition relation associated with a TSS P obeys the rules of P,
i.e. if the premises of a ground instance of a rule in P are valid in —, then the conclusion is also
valid in —. (In terms of logic: the rules of P, interpreted as implications, are true in —).

Definition 3.2. Let P = (T, A, R) be a TSS and let — C Tr(X, A) be a transition relation.
— is a model of P if:

be— <« 3IreRanddo:V — T(S) such that: { ;sz’:)‘;"‘:(‘:b(’)) and

On the other hand, a transition 1 should not be incorporated in the transition relation — of
a TSS P unless there is a good reason to do so, namely a rule in P with valid premises in —
concluding 9.



485

Definition 3.3. Let P = (X, A, R) be a TSS. Let — C Tr(Z, A) be a transition relation. —»
is supported by P if:

P €— = IreRandIo:V — T(T) such that: { c_o;c’;'?:)e)n;(:/,(r)) and

Combining the previous definitions, we get:

Definition 3.4. Let P = (Z, 4, R) be a TSS. Let — C Tr(Z, A) be a transition relation. —
is a supported model of P if — is supported by P and — is a model of P.

The notion of — being a supported model of P was introduced in [2] as ‘— agrees with P’
Although the transition relation associated with a T'SS should certainly be a supported model
of it, the notion of supportedness is generally not sufficient to exclude all superfluous transitions
from the transition relation. For positive TSS’s this shortcoming is easily remedied by associating
with a TSS P the least transition relation (w.r.t. set inclusion) that is a model of P.

Definition 3.5. The transition relation — p associated with a positive TSS P is the least model
of P w.r.t. set inclusion.

Traditionally ([11, 14]) an alternative but equivalent definition of the transition relation associated
with a positive TSS was given, based on the provability of transitions. For TSS’s with negative
premises it is much more difficult to find an appropriate associated transition relation as is shown
by the following example.

Example 3.6. Suppose we have a TSS P with one constant f, two labels a and b and the
following rules:

f=2f e

1 ff
We would like P to define the transition relation —p = { f -b, f}. However, P has exactly two
minimal models, {f~2+f} and {f N }, which are both supported.

Thus in the presence of negative premises there may be several minimal models, some of them
may be supported. So other characterizations for associated transition relations must be sought.
The notion of provability also needs a revision, as it is not a priori clear how the negative premises
of a rule must be proved.

Similar problems concerning negative premises have been studied in the context of logic pro-
gramming. A first solution proposed there introduced the notion of (local) stratification [16].
Here we follow [10], where this notion was tailored for TSS’s.

Definition 3.7. Let P = (5,4, R) be a TSS. A function S : Tr(Z,A) — «, where « is an
ordinal, is called a stratification of P if for every rule r € R and every substitution o : V — T(T)
it holds that:

for all ¥ € pprem(o(r)) : S(¥) < S(conc(o(r)) and
for all t-% € nprem(o(r)) and t' € T(Z) : S(t-2t') < S(conc(o(r))).

If P has a stratification, we say that P is stratified.

The stratification guarantees that the validity of no literal depends on the validity of its negation.

Example 3.8. The TSS of example 3.6 can be stratified by a stratification S as follows:
S(f-%+f) =0and S(f - f)=1.
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Each positive transition system specification is trivially stratified by putting all positive literals
in stratum 0. In [10] it is shown that BPA s with priorities and renaming but without abstraction
is stratified under some appropriate conditions.

How a transition relation — p g is associated to a stratified TSS P is defined in [10]. Although
the stratification technique is often applicable, there are examples of TSS’s that have an intuitive
meaning while not being stratified. One such example is BPAg,, with priorities.

Example 3.9. Suppose we have an instance Py of BPAs. with priorities based on a set of
actions Act containing at least two elements a and b such that a < b. Consider for arbitrary terms

t and u the following instances of rules which prove that for any stratification S of Py it should
hold that:

a b
St-Lria (@) < by e (Rs.1)
S(8(t)-26(u)) < by 6(t)=6(u) (R7.2)

T(ap(0(t) (e} (0(w))

br, 71 (0(8)) 7001 (B(u
Sria @) r@E) < by el T j{i(f(f» @@ (g3

S(t-iﬂ'{a} (0(u)))

Of course, such a stratification cannot exist.

4 TSS’s and their associated transition relations

So far no meaning has been given to TSS’s that are not stratified. There are however TSS’s,
like BPA 4. with priorities, that seem to be perfectly meaningful while not being stratified. This
brings us back to the fundamental question what transition relation should be associated with
a TSS. Our answer is essentially that the transition relation must be the unique stable model in
the sense of logic programming [8]. We strongly believe that any T'SS that has no unique stable
transition relation does not have a proper meaning.

The definition of a stable transition relation is intuitively as follows. Our first observation is
that positive and negative premises in a rule of a TSS P have a different status. In order to prove
the conclusion of a rule, the positive premises of the rule must be proved from P. However, as
P contains only rules defining which literals hold, but not which literals do not hold, negative
premises must be treated differently.

Conceptually, t-% holds by default, i.e. if for no t': t—2+t' can be proved. But we are still
trying to determine which literals can be proved. So instead of an immediate characterization of
the set of provable literals —, we have an equation with this set both on the left and on the
right side, namely:

— equals the set of literals that are provable by those rules of the TSS of which the
negative premises hold in —.

This equation does not give us a means to compute the transition relation —, but we can easily
check whether a given transition relation satisfies our criterion.

We now formalize these ideas. In section 4, 5 and 6 we use only ground TSS’s, i.e. we identify
a set of rules R with the set of ground instances of R.
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Definition 4.1. Let P = (5, 4, R) be a TSS. Let — C Tr(Z, A).
Sirip(P,—) = (I, A, Strip(R, —))

where
Stﬂp(R, —-)) = {TIIET €R: — F= nprem(r) and ' = PP"‘em(T) }‘

cone(r)

Given a transition relation —, the function Sirip removes all rules in R that have negative
premises that do not hold in —. Furthermore, it drops the negative premises from the remaining
rules. The following lemma is therefore obvious.

Lemma 4.2. Let P = (X, A, R) be a TSS and let — C T'r(X, A) be a transition relation. Then
Strip(P,—) is a positive TSS.

Using the fact that the notion of provability is already captured in the definition of the transition
relation associated with a positive TSS, we can now easily formalize the previously stated equation.

Definition 4.3 (Stable transition relation). Let P = (I, A, R) be a TSS. A transition relation
— C Tr(%, A) is stable for P if — = — .

Strip(P,—)
Remark 4.4. In general, for a TSS P there may be 0, 1 or more transition relations that are
stable for P, e.g.

0. I
f—=f
a b
1: - af—-—*f [— = 0]
f—f
i

[— ={f>f}or — = {f>F}

f=f f>f

We do not have any idea as to which transition relations should be associated with the first TSS,
nor do we know which one of the two transition relations of the third TSS should be preferred.
In fact we think that there are no satisfying answers to those questions. Thus we propound the
following definition.

Definition 4.5. Let P be a TSS. If there is a unique transition relation — stable for P, then
— is the transition relation associated with P.

In order to avoid confusion, we do not again introduce the notation — p: until section 7 this
notation remains reserved for stratified TSS’s.

Remark 4.6. If P is positive, then for every transition relation —, Strip(P,—) = P, thus
— p is the unique transition relation that is stable for P. Hence, this definition of ‘associated
with’ coincides with the previously given definition for positive TSS’s. In section 6 we show that
our choice also extends the definition of ‘associated with’ for stratified TSS’s.

Our choice that a transition relation must be stable for a TSS is also a refinement of the require-
ment that a transition relation must be a supported and minimal model of it (Cf. 8], theorem 1).
We now apply the notion is stable for to our running example.
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Example 4.7. Consider P, with at least two actions @ and b such that a > b and a process
name X with the recursive definition

X <« B(T(b}(X) ~a+b).

It can be shown that there is no transition relation — that is stable for Pj. If one assumes that
— |= 7(3)(X) %t for some t or that — k= 7(5}—7, then a contradiction follows. If one assumes
that — = -,-{b}(X)_{A and that — = 7(3}(X)~2t for some ¢, then it appears that for no t,
7(5}(X) -t is provable from Strip(Py, —)-

5 Reducing TSS’s

We now present a technique that can be useful for proving that a certain TSS has a unique stable
transition relation. This technique is inspired by the well-founded models that are introduced in
[7]. First we construct a 3-valued ‘interpretation’ for a TSS P, partitioning the set of transitions
in three groups: those that are certainly true, those of which the truth is unknown and those
that are certainly not true. We apply this information to reduce P to another TSS with exactly
the same stable transition relations as P. In this new TSS, the truth or falsity of more literals
may become certain. Repeated reduction may lead to complete information: the unique stable
transition relation.

If in the next definition —+,,. contains transitions that certainly hold and —,, contains all
transitions that possibly hold, then rules with certainly wrong premises are removed and in the
remaining rules all premises that certainly hold are dropped.

Definition 5.1. Let P = (I, 4, R) be a TSS. Let —y54e, —pos & T(Z, A) be transition
relations.

Reduce(P, —rye, _"’poa) = (Z, A, Reduce(R, —trye, '—"pu))»

where
Reduce(R, —irues “‘"poa) = {TIIBT €ER: —true |= nprem(r)v —pos i= pprem('r) and

= {1/’ € Pprem(r)l'—"true bé 1/"} U {11) € nprem(r)l_—"poa bé 11’} }

cone(r)

Thus the reduction of a rule consists of two phases. First it is checked that the premises are possibly
true. For positive premises this is straightforward: t—=+t' is possibly true if t—+t' € —,,,. Hence
the condition —p,, [= pprem(r). A negative premise t-% is possibly true if it is not certain that
t can perform an a-step, i.e. for no t' it is certain that t—2+t' holds. Thus ¢-24 is possibly true if
for no t', t—=+t' € —¢py.. Hence the condition —¢ru. = nprem(r).

If indeed the premises of the rule are possibly true, then the premises that are certeinly true
are removed. A positive premise t—t' is certainly true if t—"+t' € —;,,.. A negative premise
t-% is certainly true if ¢ cannot possibly perform an a-step, i.e. for no t': t~%+t' is possible. Thus
t-% is certainly true if —,,, |= t-%>. We shall always use definition 5.1 with —rue & —pos.

Remark 5.2. Note that Reduce(R,—, —) differs from Strip(R, —). In Strip(R, —) only
negative premises are checked, yielding a positive TSS; in Reduce(R, —,—) all premises are
checked, resulting in a TSS consisting solely of rules without premises.

The 3-valued. interpretation required is obtained by means of two positive TSS’s: T'rue(P) and
Pos(P). True(P) determines the transitions that are certainly true: the transitions that can be
proved with positive rules only. Pos(P) determines the transitions that are possibly true, i.e.
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true or unknown. These are the transitions that can be proved ignoring negative premises. Thus
Pos(P) is obtained from P by removing all negative premises of the rules.

Definition 5.3. Let P = (%, A, R) be a TSS.
- True(P) = (X, A, True(R)) where True(R) = {r € R|nprem(r) = 0}.

- - — . .+ pprem(r)
Pos(P) = (%, A4, Pos(R)) where Pos(R) = {r'|[3r€ R: r' = cone()

Because after the reduction of P the truth or falsity of more literals may become certain, it is
worthwhile to iterate the reduction process; if necessary even transfinitely many reduction steps
may be considered.

Definition 5.4. Let P = (%, A, R) be a TSS. For every ordinal e, the a-reduction of P, notation
Red®(P), is recursively defined as follows:

- Red'(P) = (%, A, Ryrouna) Where Ryrouna is the set of all ground instances of rules in R,

- Red*(P) = Reduce(P,Ugcq = True(Red?(P))>[\g<a — Pos(Red(P)))-

Thus in contrast with [7] and general practice in logic programming, our operator maps TSS’s
to TSS’s rather than interpretations to interpretations. This allows us in section 6 to combine
reduction with stratification: as soon as the reduced TSS is stratified, no further reduction is
needed.

Our hope is that after sufficiently many reductions we obtain a positive TSS. If this is the
case, then our method has succeeded: the transition relation of this positive TSS is the unique
transition relation that is stable for the original one. (Example 7.5 shows that the converse is not
true: a TSS having a unique stable transition relation need not reduce to a positive TSS.)

Theorem 5.5 (Soundness of reduction). Let P = (X, A, R) be a TSS and let — C Tr(Z, A).
For all ordinals o we have:

— is stable for P & — is stable for Red®(P).

Corollary 5.6 (Cf. [7], corollary 6.2). If P reduces to a positive TSS, i.e. Red*(P) is positive
for some «, then — g.q4«(p) is associated with P.

6 Reduction and stratification

We now have two independent methods for associating a transition relation with a TSS with
negative premises: reduction and stratification. Three questions arise:

- if both methods are applicable, is their result the same?
- is one method (strictly) stronger than the other?
— is it useful to combine the two methods?

In this section we answer these questions affirmatively. For a stratified TSS P, the relation —p
as defined in section 3 is stable for P. Furthermore, repeatedly reducing a stratified TSS yields
a positive TSS. Thus — p is the unique transition relation that is stable for P. This is also the
answer to our second question: reduction is indeed stronger than stratification (that it is strictly
stronger is easily seen by the second TSS in remark 4.4).
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Theorem 6.1 (Cf. [8], corollary 1 and [7], theorem 6.3). Let P = (£, A, R) be a TSS with
stratification S : Tr(Z, A) — o Then Red*(P) is a positive TSS and —p = —peaa(p) 18
associated with P.

So it seems that there is no point in combining the two methods: the result could not be stronger
than reduction alone. However, for practical purposes the combination appears to be valuable,
due to the fact that the existence of a stratification is generally easier to demonstrate.

Corollary 6.2 (Combining reduction and stratification). Let P = (5, A,R) be a TSS and
suppose that for some ordinals & and 8, § : Tr(E, A) — « is a stratification of Red?(P). Then
Red>+P(P) is a positive TSS and — g.ga+s(p) = — Reas(P) IS associated with P.

In the remainder of this section we apply this corollary to show that a transition relation is
associated with an instance Py of BPAs., with priorities, provided that two conditions hold:

1. The abstraction operator 77 does not occur in process terms. The reason for this condition
was already shown in example 4.7. This is conform the standard practise in process algebra.

2. There is no a € Act such that T < a (cf. [18] where it is argued that T > a for all actions a
seems the most ‘intuitive’ choice).

Theorem 6.3. If for all (X < tx) € E: 71(-) does not occur in tx and for all a € Act it does
not hold that T < a, then there is a transition relation associated with Py.

Proof. We show that Py is stratified after one reduction step. To this end we formulate a useful
property of Red'(P;). Define N : T(£y) — Nby:

N(a) =N(e)=N(§)=N(r)=N(X)=0 (X € E and a € Act),
N(z +y) = N(z-y) = N(z ay) = maz(N(z), N(y)),

N(b(z)) = N(z),

N(7i(z)) = N(z) + 1.

We show that it is not possible to prove in Py a literal t—»u when N(t) < N(u) (i.e. the ‘N-

complexity’ of a process, the depth of nestings of 77(-)’s in it, cannot increase by performing an
action).

Fact 1. For alla € Ag we have: t—">u€ —poyp,) = N(t) > N(u).

For example, the literal t-i»r{a}(O(t)) used in example 3.9 to make t—b—vr{a} (8(u)) depend nega-
tively on itself, is not possible. Based on this definition of N we define the preorder < on pairs of
literals by:

N(@{)< N(t") or

(t—>u) < (t"i*ul) iff { N(t)=N(t')and (a=1,/), a>b, ora=b.

For some ordinal o we can now define a function S : Tr(Xy, Agp) — o obtained by transforming
the preorder < into a complete well-founded ordering:

pryYiff o <dand Y <,
ey = S(p)=S(¥),
p<tandnot oy = S(p) < S¥).

(We do not need a more precise definition of S; since such a definition necessarily depends on the
size of the set Act, we omit it).

Fact 2. S is a stratification of Reduce(Py, —True(Ps)s — Pos(Ps))-

Using corollary 6.2 — duce(Po,— Truc(pp)y—Pos(ry) | Red'(Po) 18 associated with Py. O
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7 The ntyft/ntyrt-format and bisimulation congruence

We have defined the meaning of a TSS as its associated transition relation and shown how to
arrive at this transition relation. Now we switch to the study of properties of transition relations
as consequences of properties of their defining TSS’s.

An important question (e.g. in process verification) is whether two terms denote the ‘same’
process. Many process equivalences based on transition relations have been proposed, of which
strong bisimulation equivalence is most often used [12, 13]. In this section some relations between
TSS’s and strong bisimulation equivalence are studied.

Defirition 7.1. Let P be a TSS with associated transition relation — p. A relation R is a
strong bisimulation relation based on P if it satisfies:

- whenever tRu and t—2 pt' then, for some u’' € T(Z), we have u—%+pu’ and t'Ru/,
- whenever tRu and u—% pu' then, for some t' € T(Z), we have t—%»pt' and t'Ru'.

Two terms t,u € T(Z) are (P-)bisimilar, notation t« pu, if there is a strong bisimulation relation
R based on P such that tRu. Note that <2 p, the strong bisimulation equivalence induced by P,
is an equivalence relation.

A desirable property for TSS’s is that the induced strong bisimulation equivalence is a congruence.
In [11] this led to the observation that if a (positive) TSS is in the so-called tyft/tyzt-format then
this is the case. In [10] this result was extended to stratified TSS's. In order to express the
fact that negative premises are allowed, n's were added to the name of the format, obtaining the
ntyft /ntyct-format. In this section we show that even for TSS’s that are positive after reduction,
bisimulation is a congruence if the TSS is in ntyfi/ntyzi-format.

Definition 7.2. Let & = (F,rank) be a signature. Let P =(Z,A4,R)bea TSS. Aruler € Ris
in ntyft-format if it has the form:

{tioylk € K} U {t; 2]l e L}
f(a:ly ey mra‘nk(f))_a"t

with K and L (possibly infinite) index sets, yi,z; (1 < i < rank(f)) all different variables,

a,b,a € A, f € F and tx,t;,t € T(Z). A rule r € R is in niyzi-format if it fits:

{tk—‘l’i-)yk[k € K} U {tz-%‘*” € L}

-2t

with K, L (possibly infinite) index sets, yy, = all different variables, ax, bi,a € A, t;,t; and t € T(E).
P is in ntyft/ntyct-format if all its rules are either in ntyft- or in ntyzt-format.

As in [10, 11], we need the following well-foundedness condition in order to prove the congruence
theorem.

Definition 7.3 (Well-foundedness). Let P = (%, A, R) be a TSS. Let S = {t,*5t}|k € K} C
T(X) x A x T(Z) be a set of positive literals over & and A. The variable dependency graph of S is
a directed (unlabeled) graph VDG with:

~ Nodes: Uyex Var(tr25t}),
- Edges: {< z,y > |z € Var(t), y € Var(t},) for some k € K}.

S is called well-founded if any backward chain of edges in the variable dependency graph is finite.
A rule is called well-founded if its set of positive premises is well-founded. A TSS is called well-
founded if all its rules are well-founded.
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Theorem 7.4 (Congruence theorem). Let P be a well-founded TSS in ntyft/ntyzt-format that
is positive after reduction. Then < p is a congruence.

The next example shows that the requirement in the congruence theorem that the TSS P must be
positive after reduction is really needed. We give a TSS in ntyft/ntyzt-format that has a unique
stable transition relation but that is not positive after reduction and for which bisimulation is not
a congruence.

Example 7.5. Let P = (I, A4, R) be a TSS where L contains constants ¢; and c; and a unary
function f. The actions in A are a, by, by and the rules are the following:

El: -3¢ E2: cy3—%cy

ey f(2)% fe)B o, T2y f(@)F fle) P

F(z)2cs f(z)22ey

Red'(P) is a TSS with the following rules:

E3:

! a
El‘: cl—iml E2 : Co—C

B3’ - fle) B fle) E3" - fle2) B fle)t2

f(Cl)—b—z*Cz ’ fleg) ey
gy f@)% [ g f)P fla)
' Fler) e fle2)2oey

Further reduction of P is not possible. However, we observe that both in E3' and E4” the
conclusion denies the second premise. Therefore, a transition relation that is stable for P must
deny the first premise of E3' and of E4”, i.e. it must contain f (c;)t; and f (cg)-22+t5 for some
t; and ty. The only candidates that might be provable are f (cl)-b—‘u,;l and f(cz)-—b—z-»cz. Indeed
they are provable from E3" and E4' (as blocking E3' and E4" implies f(c;)% and f (02)-"—}4), so
{c1—vc1, -y, f(cl)ﬂ»cl, f(cg)—b%q} is the unique transition relation that is stable for P.
Now it is obvious that c; = pey, but not f(c;)e=xp f(ca), so =2p is not a congruence.

8 An axiomatization of priorities with abstraction

This last section is devoted to our running example. We consider an instance Py = (2g, Ag, Rp)
of BPAg,, with priorities such that for all (X < tx) € E: () does not occur in tx and for all
a € Act it does not hold that 7 < a. By theorem 6.3 P; has an associated transition relation
—_— Py

In table 2 we list the axiom set BPAS _ for strong bisimulation equivalence induced by Pj.
This axiom system consists of a straightforward assembly of existing axioms [1, 12], adding only
the axiom P3 showing the interaction between <« and 7. Nevertheless, as far as we know, this
straightforward compilation has not been justified in bisimulation semantics. Only in [18] 7 and
6 have been combined using an isomorphic embedding.

Definition 8.1. Let ¥ = (F,rank) be a signature and let Eq be a set of axioms over . Let
Rg, C T(Z) x T(X) be the smallest congruence relation satisfying that tRp,u if ¢ = u is a

ground instance of an axiom in Eq. For terms t,u € T(Z), we say that Eq proves t = u, notation
Eqtt=u,if tRpu.

BPAY,. is sound and for recursion free process terms also complete with respect to 2 p,.
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z+(y+2)=(x+y)+z Al lar=a T1
Tt+y=y+zx A2 |rz+z=1x T2
z+z==zx A3 |a(rz+y)=altz+y)+az T3
(z+y)z=z2+9yz A4

(zy)z = 2(y2) Ab

z4+6=zx A6 | 8(e) =¢ THE
dz=2§ AT | 6(8)=56 THD
ez =z A8 | f(az) = ab(x) TH1
TE=2 A9 |8(z+y)=06(z)ey+6(y)<z TH2
€4z =¢ PEL | 7r(e) =€ TIE
Tdae=c PE2 | m(6)=¢ TID
baz =6 PD1 | r(a)=aifag] TI1
z4é==x PD2 | ri(a)=Tifa €] TI2
azaby =6 if (a < d) Pl | 7i(z +y) = 71(z) + 71(v) TI3
az<acy =az if =(a < ¢) P2 | mr(zy) = mr(z)7r(y) TI4
azaTy=az<yif~(a<7) P3

za(y+z2)=(z<y)az P4

(z+y)az=zaz+yaz P5

Table 2: The axiom set BPAS,, (a,b € Act, and ¢ € Act).

Theorem 8.2. (Soundness) Let t,u € T(X,). It holds that:
BPA! Ft=u = tepu

Theorem 8.3. (Completeness) Let t,u € T(Z4) be recursion free. It holds that:
topu = BPAY Ft=u

The soundness and completeness proofs can be carried out by induction on proof trees (standard
for positive TSS’s) of the ‘stripped’ version of P;. This leads to a more general observation:
induction on proof trees derived from a ‘stripped’ TSS is a powerful proof tool for TSS’s with
negative premises.
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